
Author: Marco Petris Version: 1.1 Date: 17.01.10

Old query syntax New query syntax Remarks

bicycle "bicycle"
\where "where" But note: the quotation mark has to be

escaped: "and then he said: \ " hello\ " "

b.* reg="\bb.*?\b" \b is the word boundary marker and ?
indicates a reluctant quantification
otherwise we would match phrases
rather than words because the .* would
consume even the word boundaries

be.* reg="\bbe.*?\b"
ta[!aeiou]* reg="\bta[^aeiou]*\b" ^ inverts the character class [aeiou]

t[d-j]*.*
t[d-j]+.*

reg="\bt[d-j]*.*?\b"
reg="\bt[d-j]+.*?\b"

reg="\bt[d-j]+.*?\b" makes more sense
here since reg="\bt[d-j]*.*?\b" equals
reg="\bt.*?\b" because [d-j]* includes
empty sequences and the following .*?
matches everything

.*ed reg="\S*ed\b" \S means „not a whitespace character“

@cars @cars
"the sky is blue" "the sky is blue"
freq = 5 freq = 5
freq < 100 freq < 100
freq >= 50 freq >= 50
freq = 5-10 freq = 5-10
simil friend 70% simil = "friend" 70%
tag = town tag = "town"
bob, builder "bob", "builder"
.*ed, freq > 20 reg="\S*ed\b", freq > 20
bob & builder "bob" & "builder" 10 10 is the span size for the collocation,

if omitted the default value is 5

@cars - @germancars @cars - @germancars
te.* - test reg="\bte.*?\b" - "test"
an;u.* "an";reg="\bu.*?\b"
an;u.*;request "an";reg="\bu.*?\b";"request"
te.* - freq >= 100 reg="\bte.*?\b" - freq >= 100
te.* where freq < 100 reg="\bte.*?\b" where freq < 100
windows;crashed where freq <
100

"windows";"crashed" where freq <
100

a.* where simil andy 50% reg="\ba.*?\b" where simil= "andy"
50%

markus where tag = villain "markus" where tag = "villain"
markus where tag = villain, tag
= heir

"markus" where tag = "villain", tag =
"heir"

markus where tag = villain | tag
= foe

"markus" where tag = "villain" | tag =
"foe"

http://en.wikipedia.org/wiki/Regular_expression

Author: Marco Petris Version: 1.1 Date: 17.01.10

The most important regular-expression constructs

For a full description see the documentation of Java regular expressions.

Construct Matches

Characters
x The character x
\\ The backslash character
\" The character "

Character classes
[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)
[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

Predefined character classes
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

POSIX character classes (US-ASCII only)
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\x7F]
\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}\x20]
\p{Blank} A space or a tab: [\t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Author: Marco Petris Version: 1.1 Date: 17.01.10

Boundary matchers
^ The beginning of a line
$ The end of a line
\b A word boundary
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator, if any
\z The end of the input

Greedy quantifiers
X? X, once or not at all
X* X, zero or more times
X+ X, one or more times
X{n} X, exactly n times
X{n,} X, at least n times
X{n,m} X, at least n but not more than m times

Reluctant quantifiers
X?? X, once or not at all
X*? X, zero or more times
X+? X, one or more times
X{n}? X, exactly n times
X{n,}? X, at least n times
X{n,m}? X, at least n but not more than m times

Possessive quantifiers
X?+ X, once or not at all
X*+ X, zero or more times
X++ X, one or more times
X{n}+ X, exactly n times
X{n,}+ X, at least n times
X{n,m}+ X, at least n but not more than m times

Logical operators
XY X followed by Y
X|Y Either X or Y
(X) X

Quotation
\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
\E Nothing, but ends quoting started by \Q

	The most important regular-expression constructs

